首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11363篇
  免费   567篇
  国内免费   81篇
化学   7956篇
晶体学   113篇
力学   288篇
数学   1060篇
物理学   2594篇
  2023年   59篇
  2022年   50篇
  2021年   230篇
  2020年   193篇
  2019年   201篇
  2018年   181篇
  2017年   177篇
  2016年   352篇
  2015年   350篇
  2014年   416篇
  2013年   731篇
  2012年   828篇
  2011年   950篇
  2010年   585篇
  2009年   476篇
  2008年   799篇
  2007年   708篇
  2006年   716篇
  2005年   597篇
  2004年   567篇
  2003年   475篇
  2002年   450篇
  2001年   275篇
  2000年   164篇
  1999年   114篇
  1998年   71篇
  1997年   61篇
  1996年   90篇
  1995年   99篇
  1994年   82篇
  1993年   68篇
  1992年   59篇
  1991年   40篇
  1990年   59篇
  1989年   64篇
  1988年   41篇
  1987年   38篇
  1986年   21篇
  1985年   62篇
  1984年   37篇
  1983年   34篇
  1982年   39篇
  1981年   39篇
  1980年   29篇
  1979年   34篇
  1978年   22篇
  1977年   29篇
  1976年   22篇
  1975年   21篇
  1973年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
We study averaged decay estimates for Fourier transforms of measures when the averages are taken over space curves with non-vanishing torsion. We extend the previously known results to higher dimensions and discuss sharpness of the estimates.  相似文献   
62.
Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.  相似文献   
63.
Precise control of multiple structural parameters associated with vinyl polymers is important for producing materials with the desired properties and functions. While the development of living polymerization methods has provided a way to control the various structural parameters of vinyl polymers, the concomitant control of their sequence and regioregularity remains a challenging task. To overcome this challenge, herein, we report the living cationic ring-opening polymerization of hetero Diels–Alder adducts. The scalable and modular synthesis of the cyclic monomers was achieved by a one-step protocol using readily available vinyl precursors. Subsequently, living polymerization of the cyclic monomers was examined, allowing the synthesis of vinyl polymers while controlling multiple factors, including molecular weight, dispersity, alternating sequence, head-to-head regioregularity, and end-group functionality. The living characteristics of the developed method were further demonstrated by block copolymerization. The synthesized vinyl polymers exhibited unique thermal properties and underwent fast photodegradation even under sunlight.  相似文献   
64.
Inducing strong metal-support interaction (SMSI) has been a useful way to control the structure of surface active sites. The SMSI often causes the encapsulation of metal particles with an oxide layer. Herein, an amorphous ceria shell was formed on Cu nanoparticles under a mild gas condition with high activity and durability for surface reaction. Cu−Ce solid solution promoted the transfer of surface oxygen species, which induced the ceria shell formation on Cu nanoparticles. This catalyst was used for CO2 hydrogenation, selectively producing CO with high low-temperature activity and good durability for operation at high temperature. CO2 activation and H2 spillover could occur at low temperatures, enhancing the activity. The shell prevented the sintering, assuring durability. This catalyst was applied to a bench-scale reactor without loss in performance, resulting in high CO productivity in all temperature ranges.  相似文献   
65.
Chiral metal–organic frameworks (MOFs) have gained rising attention as ordered nanoporous materials for enantiomer separations, chiral catalysis, and sensing. Among those, chiral MOFs are generally obtained through complex synthetic routes by using a limited choice of reactive chiral organic precursors as the primary linkers or auxiliary ligands. Here, we report a template-controlled synthesis of chiral MOFs from achiral precursors grown on chiral nematic cellulose-derived nanostructured bio-templates. We demonstrate that chiral MOFs, specifically, zeolitic imidazolate framework (ZIF), unc -[Zn(2-MeIm)2, 2-MeIm=2-methylimidazole], can be grown from regular precursors within nanoporous organized chiral nematic nanocelluloses via directed assembly on twisted bundles of cellulose nanocrystals. The template-grown chiral ZIF possesses tetragonal crystal structure with chiral space group of P41, which is different from traditional cubic crystal structure of I-43 m for freely grown conventional ZIF-8. The uniaxially compressed dimensions of the unit cell of templated ZIF and crystalline dimensions are signatures of this structure. We observe that the templated chiral ZIF can facilitate the enantiotropic sensing. It shows enantioselective recognition and chiral sensing abilities with a low limit of detection of 39 μM and the corresponding limit of chiral detection of 300 μM for representative chiral amino acid, D- and L- alanine.  相似文献   
66.
An understanding of the CO2 adsorption mechanisms on small-pore zeolites is of practical importance in the development of more efficient adsorbents for the separation of CO2 from N2 or CH4. Here we report that the CO2 isotherms at 25–75 °C on cesium-exchanged phillipsite zeolite with a Si/Al ratio of 2.5 (Cs-PHI-2.5) are characterized by a rectilinear step shape: limited uptake at low CO2 pressure (PCO2) is followed by highly cooperative uptake at a critical pressure, above which adsorption rapidly approaches capacity (2.0 mmol g−1). Structural analysis reveals that this isotherm behavior is attributed to the high concentration and large size of Cs+ ions in dehydrated Cs-PHI-2.5. This results in Cs+ cation crowding and subsequent dispersal at a critical loading of CO2, which allows the PHI framework to relax to its wide pore form and enables its pores to fill with CO2 over a very narrow range of PCO2. Such a highly cooperative phenomenon has not been observed for other zeolites.  相似文献   
67.
π-Conjugated organic semiconductors are promising materials for surface-enhanced Raman scattering (SERS)-active substrates based on the tunability of electronic structures and molecular orbitals. Herein, we investigate the effect of the temperature-mediated resonance-structure transitions of poly(3,4-ethylenedioxythiophene) (PEDOT) in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT : PSS) films on the interactions between substrate and probe molecules, thereby affecting the SERS activity. Absorption spectroscopy and density functional theory calculations show that this effect occurs mainly due to delocalization of the electron distribution in molecular orbitals, effectively promoting the charge transfer between the semiconductor and probe molecules. In this work, we investigate for the first time the effect of electron delocalization in molecular orbitals on SERS activity, which will provide new design ideas for the development of highly sensitive SERS substrates.  相似文献   
68.
The development of covalent organic frameworks (COFs) with efficient charge transport is of immense interest for applications in optoelectronic devices. To enhance COF charge transport properties, electroactive building blocks and dopants can be used to induce extended conduction channels. However, understanding their intricate interplay remains challenging. We designed and synthesized a tailor-made COF structure with electroactive hexaazatriphenylene (HAT) core units and planar dioxin (D) linkages, denoted as HD-COF. With the support of theoretical calculations, we found that the HAT units in the HD-COF induce strong, eclipsed π–π stacking. The unique stacking of HAT units and the weak in-plane conjugation of dioxin linkages leads to efficient anisotropic charge transport. We fabricated HD-COF films to minimize the grain boundary effect of bulk COFs, which resulted in enhanced conductivity. As a result, the HD-COF films showed an electrical conductivity as high as 1.25 S cm−1 after doping with tris(4-bromophenyl)ammoniumyl hexachloroantimonate.  相似文献   
69.
Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon-carbon (C−C) bonds with isoelectronic boron-nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without significant structural changes. Although some researchers have reported the preparation of B2N2 anthracene derivatives with two B−N bonds, no compounds with continuous multiple BN units have been prepared yet. Herein, we report the synthesis and characterization of a B2N2 anthracene derivative with a BNBN unit formed by converting the BOBN unit at the zigzag edge. Compared to the all-carbon analogue 2-phenylanthracene, BNBN anthracene exhibits significant variations in the C−C bond length and a larger highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap. The experimentally determined bond lengths and electronic properties of BNBN anthracene are confirmed through theoretical calculations. The BOBN anthracene organic light-emitting diode, used as a blue host, exhibits a low driving voltage. The findings of this study may facilitate the development of larger acenes with multiple BN units and potential applications in organic electronics.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号